

Ref.: Handbuch_LVCnet.docx 03.05.2023

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

© TRsystems GmbH, Systembereich Unidor

D-75179 Pforzheim Freiburger Straße 3 Tel.: +49 (0)7231 / 3152 0 Fax: +49 (0)7231 / 3152 99 unidor@trsystems.de www.unidor.de | www.trsystems.de

Urheberrechtsschutz

Dieses Handbuch, einschließlich der darin enthaltenen Abbildungen, ist urheberrechtlich geschützt. Drittanwendungen dieses Handbuchs, welche von den urheberrechtlichen Bestimmungen abweichen, sind verboten. Die Reproduktion, Übersetzung sowie die elektronische und fotografische Archivierung und Veränderung bedarf der schriftlichen Genehmigung durch den Hersteller. Zuwiderhandlungen werden verfolgt und entsprechende Schadensersatzansprüche geltend gemacht.

Änderungsvorbehalt

Jegliche Änderungen, die dem technischen Fortschritt dienen, bleiben vorbehalten.

Dokumenteninformation

Ausgabe-/Rev.-Datum: Dokument-/Rev.-Nr.: Dateiname: Verfasser: 03.05.2023 05 Handbuch_LVCnet.docx HOT

Schreibweisen

Kursive oder **fette** Schreibweise steht für den Titel eines Dokuments oder wird zur Hervorhebung benutzt.

Courier-Schrift zeigt den Text an, der auf dem Display bzw. Bildschirm sichtbar ist und die Menüauswahlen von Software.

" < > " weist auf Tasten der Tastatur Ihres Computers hin (wie etwa <RETURN>).

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de www.unidor.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

1 Inhaltsverzeichnis

1 Inhaltsverzeichnis					
2	Änder	6			
3	Übersi	7			
4	Techni	sche D	aten	LVCnet	8
	4.1	rinzip	8		
	4.2	Funkti	ionsu	Imfang	9
	4.2	2.1 (oled	-Anzeige	10
		4.2.1.	1	Menüsteuerung	10
		4.2.1.	2	IP-Adresse	12
		4.2.1.	3	MAC-Adresse	12
	4.2	2.2 1	Ladui	ngseingänge 14	13
		4.2.2.	1	Trigger	13
		4.2.2.	2	Min-Max Messung (Teach)	13
		4.2.2.	3	Scale	13
		4.2.2.	4	Channel Limits – Kanalweise Skalierung	13
	4.2	2.3 I	Digita	aleingänge 14	14
	4.2	2.4 1	Digita	alausgänge 12	14
	4.2	2.5 /	Analo	ogausgänge 14	14
	4.3	Elektri	ische	Kenndaten	15
	4.4	Umge	bung	gsbedingungen	16
	4.5	Maßz	eichn	ung	16
	4.6	Mecha	anik /	/ Lieferumfang	16
5	Inbetri	ebnahr	me Et	hernet – Variante	17
	5.1	Einsch	nalter	n des Gerätes	17
	5.2	Übers	icht .		18
	5.3	LVCne	et – V	/arianten	21
	5.3	3.1 I	LVCn	et – LVCpro Ersatz	21
	5.3	3.2 I	LVCn	et – Freie Konfiguration	23
	5.4	Updat	te de	s Gerätes	25

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de www.unidor.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

	5.5	TCP/IP-Einstellungen						
	5.6	Logo	ut		27			
6	Inbetri	ebnah	ime E	therCAT – Variante	28			
	6.1	Allge	mein	es	28			
	6.2	EtherCAT-Funktionsprinzip						
	6.3	Insta	llierei	n / hinzufügen der ESI-Datei LVCnet-XXXX-EC.XML	29			
	6.4	Test	des V	erstärkers im "Free Run-Modus" mit TwinCAT	29			
	6.5	Besch	hreib	ung des Prozessabbildes	30			
	6.5	5.1	Ladu	Ingsistwerte Kanal 1 – 4 "Charge Inputs"	30			
	6.5	5.2	Zust	and der Digitalen Eingänge 1-2 "Digital Inputs" / Limit Erkennung	30			
	6.5	5.3	ADC	-Ersatzwert des (skalierten) Ladungsistwertes 1 -4 "Analog Inputs"	31			
	6.5	5.4	Min	Max Messung des Ladungsistwertes "Peakvalues"	31			
	6.5	5.5	Steu	erung des Ladungsverstärkers "Control"	31			
		6.5.5	5.1	Trigger 14 Messfenster	31			
		6.5.5	.2	Teach 14 Maximalwert / Minimalwert ermitteln	31			
		6.5.5	.3	Scale 14 Skalierung der Eingangsstufe(n)	31			
	6.5	5.6	Digi	tal Outputs (Digitale Ausgänge)	31			
	6.5	5.7	Cha	nnel Limits – Kanalweise Skalierung der ADC-Ersatzwerte	32			
	6.5	5.8	Übe	rsicht aller Variablen	33			
	6.6	Konf	igurie	eren der PDI / PDO Objekte	34			
7	CoE (C	AN o'	ver Et	herCAT) Objekte	35			
	7.1	Obje	kt 10	00h: Gerätetyp	35			
	7.2	Obje	kt 10	08h: Hersteller Gerätenamen	35			
	7.3	Obje	kt 10	09h: Hersteller Hardwareversion	36			
	7.4	Obje	kt 10	0Ah: Hersteller Softwareversion	36			
	7.5	Obje	kt 10	18h: Identity Objekt	36			
	7.6	Obje	kt 20	18h: Ext. Deviceinformation Objekt	38			
	7.7	Obje	kt 20	1Ah: Calibration Information Objekt	40			
	7.8	Gesa	mtük	persicht Objektverzeichnis	42			
8	Firmwa	areup	date	über TwinCAT®	43			
9	Vorgeł	nensw	eise :	zum Updaten der Software	46			

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de www.unidor.de

Seite 4/62

Ref.: Handbuch_LVCnet.docx 03.05.2023

10	Inbetr	iebnal	hme P	rofinet – Variante	48
	10.1	Insta	allierer	n / Hinzufügen der GSDML – Datei	48
	10.2	Hinz	ufüge	n der LVCnet zu einem PROFINET I/O System	48
	10.3	Besc	hreibu	ung der Module	49
	10	.3.1	Proz	essabbild des "Charge_Control" Moduls	49
		10.3	8.1.1	Beschreibung Eingangsabbild "Charge_Control"	49
		10.3	8.1.2	Beschreibung Ausgangsabbild "Charge_Control"	50
	10	.3.2	Proz	essabbild des "Charge Inputs 14 Oversampling" Moduls	51
		10.3	8.2.1	Beschreibung Ausgangsabbild "Charge Control with Oversampling"	51
		10.3	.2.2	Beschreibung Eingangsabbild Submodul "Charge IN 10 Times Oversampling	51
		10.3	.2.3	Beschreibung Baugruppenparameter "Charge Control with Oversampling"	52
	10	.3.3	Proz	essabbild des "Analog_Input" Moduls	53
		10.3	8.3.1	Beschreibung Eingangsabbild "Analog_Input"	53
		10.3	.3.2	Beschreibung Ausgangsabbild "Analog_Input"	53
	10	.3.4	Proz	essabbild des "Peak_Input" Moduls	54
		10.3	8.4.1	Beschreibung Eingangsabbild "Peak_Input"	54
	10	.3.5	Proz	essabbild des "Status" Moduls	55
		10.3	8.5.1	Beschreibung Eingangsabbild "Status"	55
	10	.3.6	Proz	essabbild des "Digital_Output" Moduls	56
		10.3	8.6.1	Beschreibung Ausgangsabbild "Digital_Output"	56
	10	.3.7	Proz	essabbild des "Digital_Input" Moduls	57
		10.3	8.7.1	Beschreibung Eingangsabbild "Digital_Input"	57
		10.3	8.7.2	Beschreibung Baugruppenparameter "Digital_Input"	58
	10	.3.8	Proz	essabbild der "Analog_Output" Module	59
		10.3	8.8.1	Funktionsbeschreibung "Analog_Output_DepScale"	60
		10.3	8.8.2	Beschreibung Ausgangsabbild "Analog_Output_DepScale"	60
	10	.3.9	Proz	essabbild des "Analog_Output_Straight" Moduls	61
		10.3	9.1	Beschreibung Ausgangsabbild "Analog_Output_Straight"	61
11	EU-Ko	nform	nitätse	rklärung	62

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de www.unidor.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

2 Änderungsindex

Änderung:	Datum:	Index:
Erstausgabe	15.12.2021	00
Profinet-Variante hinzugefügt	03.08.2022	01
Passwörter und MAC-Adresse hinzugefügt	02.12.2022	02
Überarbeitung, EU-Konformitätserklärung	20.01.2023	03
Oversampling für Profinet hinzugefügt	16.03.2023	04
DHCP in ETH-Variante hinzugefügt	03.05.2023	05

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

3 Übersicht

Die Ladungs-Verstärker-Casette LVCnet ist ein digitaler 2/4-Kanaliger Ladungs-Messverstärker mit integriertem Multiprotokoll Feldbus-Interface zur Messung von Kraft, Tonnage, Druck, Beschleunigung, Vibration und Torsion mittels piezoelektrischer Sensoren.

Die hohe Abtastrate und hohe Auflösung ermöglichen die Auswertung sehr schneller Prozesse für alle Arten von Piezo-Sensoren.

Das robuste Aluminiumgehäuse für die Hutschienenmontage ermöglichen die Verwendung der LVCnet in rauer Industrieumgebung und garantieren eine zuverlässige und langlebige Funktionalität.

Die geringe Drift der Eingangsstufen sowie die digitale Verarbeitung des Ladungssignals sind sehr präzise und erlauben daher auch quasistatische Messungen.

Das Produkt verfügt über Analogausgänge,

die die Verwendung ohne einen Feldbus ermöglichen. In dieser Betriebsart wird das digitalisierte Ladungssignal über einen 16 Bit DAC wieder als Analogsignal (±10V) für übergeordnete Steuerungen zur Verarbeitung bereitgestellt. Die Triggerung erfolgt in dieser Betriebsart über einen der 4 vorhandenen digitalen Eingänge.

Die integrierten digitalen Ausgänge ermöglichen es unabhängig von einer übergeordneten Steuerung eine Triggerüberwachung, Drahtbruchüberwachung sowie eine Min-/Maxüberwachung der Sensorsignale zu realisieren.

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de www.unidor.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

Handbuch LVCnet

4 Technische Daten LVCnet

4.1 Das Messprinzip

Das Prozessbild ist wahlweise absolut oder skaliert darstellbar. Solange der Trigger "log 0" ist, bleibt das Ausgangssignal, unabhängig vom Eingangssignal, immer Null. Die Signalauswertung startet mit dem Triggersignal "log 1" und endet mit "log 0".

Der Piezo liefert bei Druck einen positiven und bei Zug einen negativen Signalverlauf. So ist problemlos eine Druck-/Zug-Auswertung möglich. Die Absolutmessung zeigt, solange das Triggersignal 'log 1' ist, den realen Prozessverlauf des Piezo-Ausgangssignals in \pm pC (picoCoulomb). Die skalierte Messung erfolgt in Bereich \pm 10V oder \pm 32 767 Digit, also in 12 Bit ADC-Darstellung. Die Skalierung Coulomb/Spannung ist frei wählbar.

100.000 Sampels/sec und Kanal garantieren eine präzise und schnelle Prozessdarstellung. Wir liefern die LVCnet auch voll kalibriert mit Kalibrierzertifikat.

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

4.2 Funktionsumfang

Die LVCnet ist ein digitaler Ladungsverstärker der zweiten Generation. Dieser ersetzt nicht nur den Vorgänger, die LVCpro, sondern bietet zusätzliche Features wie eine OLED-Anzeige direkt auf der Hardware, 4 anstatt 2 Ladungseingängen, 4 digitale Eingänge, 2 digitale Ausgänge und 4 frei konfigurierbare analoge Ausgänge.

									LV	C.net-Version	1.00	logout
Charge	e Input						Digital	I/O				
							Digital Ir	nput		Digital	Outpu	t
Channel	Trigger	Scale	Actual pC	Minimal pC	Maximal pC		Channel	State	Function	Output	State	Function
1	•	0	379.49	-5.09	600.50		1	٠	-Trigger 1 Teach 1	1	0	n.a.
2	0	0	0.00	-19.63	2.18		2	0	-Trigger 2 Teach 2	2	0	n.a.
3	•	0	-61.79	-63.98	2.18		3		-Trigger 3 Teach 3			
4	0	0	0.00	-31.26	1.45		4		-Trigger 4 Teach 4			
Analog	g Output	:				Actual C	onfigura	tion				
						Device: LVCr	et					Configurat
Channel	Digits	Wolt	Fund	tion		Channel 1 Lir Channel 2 Lir	nit: 136242 pC nit: 136242 pC					
1	83	0.0357	1 Act. 1	/alue 1		Channel 3 Lir	nit: 136242 pC)				
2	0	0.0000	D Act. Y	/alue 2		Channel 4 Lir	nit: 136242 pC	;				
3	-15	-0.0045	58 Act. 1	/alue 3		Debounce Di Channel 1 De	gital Input bounce: 2000) µs				
4	0	0.0000	0 Act. 1	/alue 4		Channel 2 De Channel 3 De	bounce: 2000 bounce: 2000) µs) µs				

Abbildung 1: Hauptoberfläche der LVCnet - Ethernet Konfiguration

Es sind folgende Funktionsgruppen integriert:

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

4.2.1 OLED-Anzeige

Die neue OLED-Anzeige gibt für den Benutzer mehrere Ausgaben und Informationen aus. Beim Start-Up wird zunächst die Ausgabe der analogen Ausgänge (Abbildung 2) angezeigt. Hier sind die Ausgangsspannungen (Kapitel 4.2.5) zu sehen.

Durch das Drücken der unter dem OLED liegenden Tastern kann die Anzeige umgestellt werden. Es stehen folgende weitere Anzeigen zur Verfügung:

Abbildung 2: Anzeige der Analogausgänge

Abbildung 4: Anzeige der HEX-Code Einstellung (Verstärkungsfaktor) Nur im LVCpro Modus

Abbildung 3: Anzeige des Zustands der digitalen Eingänge

LUC.Cha	rge-IN	
Charge 1: Charge 2: Charge 3: Charge 4:	0.00000 pC 0.00000 pC 0.00000 pC 0.00000 pC	

Abbildung 5: Anzeige der Ladungseingänge

4.2.1.1 Menüsteuerung

Für die Steuerung sind 3 Taster unterhalb des OLED-Displays vorgesehen. Grundsätzlich sind die Funktionen der Taster wie folgt:

-	Linker Taster	\rightarrow	Aktion nach oben	(UP)
---	---------------	---------------	------------------	------

- Mittlerer Taster \rightarrow Aktion nach unten (DOWN)
- Rechter Taster \rightarrow Aktion bestätigen (ENTER)

Die in Kapitel 4.2.1 gezeigten Abbildungen sind als Übersichtsanzeigen anzusehen. Die jeweiligen Ansichten können mit den Tastern "up" und "down" gewechselt werden. Um mehr Informationen über das Gerät erfahren zu können kann das Menü durch das einmalige Drücken der "Enter"-Taste aufgerufen werden.

Die folgenden Übersichten zeigen die Menühierarchie des Gerätes

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de www.unidor.de

Seite 10/62

Ref.: Handbuch_LVCnet.docx 03.05.2023

Menüführung zu Informationen über das Gerät.

LUC.net - Networ Ethernet-Version IP: 192.168.4.119 Mask: 255.255.555.0 GW: 192.168.4.200

- Output

ue

Menüführung zu Informationen zu den Netzwerkeigenschaften.

Menüführung zu Informationen über die Ausgangseigenschaften.

Menüführung zurück zu den Übersichten aus Kapitel 4.2.1

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de www.unidor.de

Seite 11/62

Ref.: Handbuch_LVCnet.docx 03.05.2023

4.2.1.2 IP-Adresse

Die eingestellte IP-Adresse ist im Menü des OLEDs ablesbar. Hierzu sind die Taster zur Menüsteuerung zu verwenden. Mit folgenden Aktionen kann die IP-Adresse auf dem OLED abgelesen werden.

Sofern eine der Hauptoberflächen (siehe Kapitel 4.2.1) zu sehen ist, kann mit der "ENTER"-Taste in das Menü navigiert werden. Unter der Rubrik "Network", welche mit "ENTER" aufgerufen werden kann, ist die eingestellte IP-Adresse zu sehen.

Um aus dem Menü wieder auf die Hauptoberflächen zu gelangen kann über die "Back"-Zeilen auf dem OLED zurücknavigiert werden.

Die zugehörige Menüsteuerung kann auch aus Kapitel 4.2.1.1 entnommen werden.

4.2.1.3 MAC-Adresse

Auf dem Gerät befindet sich seitlich ein Typenschild worauf die 4. MAC-Adresse zu finden ist. Entsprechend sind die 1.-3. MAC-Adresse die 3 vorausgehenden Werte.

Beispiel 4. MAC-Adresse (00-03-12-08-09-33) steht auf dem Gerät:

MAC 1: 00-03-12-08-09-30	(PROFINET – MAC-Adresse des Geräts)
MAC 2: 00-03-12-08-09-31	(Schnittstelle X1 - IN)
MAC 3: 00-03-12-08-09-32	(Schnittstelle X2 - OUT)
MAC 4 [.] 00-03-12-08-09-33	(Schnittstelle X3 - DIAG)

Abbildung 6: Zuordnung der MAC-Adressen

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de www.unidor.de

Seite 12/62

Ref.: Handbuch_LVCnet.docx 03.05.2023

4.2.2 Ladungseingänge 1...4

Die Ladungseingänge werden direkt im Browser mit dem dazugehörigen Ladungsistwert in pC, solange der Trigger des betreffenden Kanals aktiv ist, angezeigt. In Abbildung 1 wird jeder Ladungseingang im Block "Charge Input" dargestellt. Dort wird über Zustandsleuchten signalisiert ob ein Trigger/Scale aktiv ist oder nicht. Ebenso sind die aktuellen, minimalen und maximalen Picocoulomb-Werte des jeweiligen Kanals aufgelistet.

4.2.2.1 Trigger

Wie in Absatz 4.2.2 beschrieben gibt das Trigger-Signal den Ladungseingang des jeweiligen Kanals frei.

4.2.2.2 Min-Max Messung (Teach)

Die Min-Max Messung erlaubt das Erfassen des minimalen und maximalen Wertes seit dem letzten aktiven Trigger-Signal. Sobald das Trigger-Signal einmal zurück- und wieder gesetzt wird, wird auch die Min-Max Messung zurückgesetzt.

4.2.2.3 Scale

Über die Scale-Bits kann für jeden Kanal eine sensitive Skalierung geschalten werden. Es gibt somit die Skalierung:

- Bit = 0 \rightarrow Normale Sensitivität (in der Regel 11 pC/Digit)
- Bit = 1 \rightarrow Hohe Sensitivität (in der Regel 1 pC/Digit)

4.2.2.4 Channel Limits – Kanalweise Skalierung

Für die Channel-Limits gibt es zwei unterschiedliche Vorgehensweisen. Zum einen kann die LVC wie ihr Vorgängermodell, die LVCpro, betrieben werden oder als LVCnet, somit frei konfigurierbar.

Näheres wird im Kapitel 5.3 der Inbetriebnahme beschrieben.

EtherCAT / Profinet:

Dieser Wert muss in der Schnittstelle eingegeben werden, sodass das Modul des "Analog Input" den Ladungseingang von "Charge Input" skaliert.

Somit gilt $Analog Input = \frac{Charge Input}{Channel Limit}$ jeweils für jeden einzelnen Kanal.

Channel Limit kann maximal ± 65535 pC groß sein.

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de www.unidor.de

Seite 13/62

Ref.: Handbuch_LVCnet.docx 03.05.2023

4.2.3 Digitaleingänge 1...4

Die LVCnet besitzt 4 Digitaleingänge.

LVCpro-Ersatzfunktion:

Digitaleingang 1 setzt den Trigger und Teach für den Ladungseingang 1. Digitaleingang 2 setzt den Trigger und Teach für den Ladungseingang 2. Die Digitaleingänge 3 und 4 sind für diese Funktion unbelegt und werden nicht ausgewertet.

LVCnet:

Bei der LVCnet-Konfiguration können die Digitaleingänge individuell konfiguriert werden. Wie in Abbildung 7 zu sehen kann auf einen Digitaleingang mehrere Trigger-Signale gelegt werden. Im Beispiel wird bei einem Eingangssignal auf dem Digitaleingang 2 die Ladungseingänge 2 und 3 getriggert.

EtherCAT / Profinet:

In den Varianten EtherCAT und Profinet stehen die Digitaleingänge dem Benutzer als reine Digitaleingänge für die weitere Applikation zur Verfügung.

4.2.4 Digitalausgänge 1...2

Über die Kommunikationsschnittstellen (Ethernet / EtherCAT / Profinet) sind die Digitalausgänge frei konfigurierbar. Dies kann beispielsweise eine Überschreitung einer Grenze sein.

4.2.5 Analogausgänge 1...4

Wie bei den Ladungseingängen sind auch die Analogausgänge vom Betriebsmodus der LVC abhängig.

Darstellung:	0 V	→ 0 pC	\rightarrow 0 Digits
	+10 V	→ + [Limit Channel n] pC	→ + 32767 Digits
	- 10 V	ightarrow - [Limit Channel n] pC	→ - 32768 Digits

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de www.unidor.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

4.3 Elektrische Kenndaten

Ladungsverstärker Eingänge 12/4 (X5X8)	
Umschaltung der Auflösung	Ja
Messbereichs Umschaltung	Kanalweise umschaltbar
Minimale Auflösung	~0,03 pC/Digit (Scale = 1, Standardausführung)
	~0,7 pC/Digit (Scale = 0, Standardausführung)
Messbereich	± 2,147 x 10 ⁹ Digit
Ausgabe Datenformat	32 Bit IEEE Float
Ausgabe Datenformat skaliert auf +/-10V	16 BIT INT
Abtastrate/Integrationsrate	200 kSPS
Steckverbinder	Steckbar Phoenix 3 pol. MSTB, Federklemmen bis 2,5 mm ²
Digitale Eingänge 14 (X11)	
Schaltschwelle für Log "1"	≥18 V
Max. Eingangsspannung	27 V DC
Steckverbinder	Steckbar Phoenix 6 pol. MSTB, Federklemmen bis 2,5 mm ²
Digitale Ausgänge 12 (X10)	
Ausgangspegel	Versorgungsspannung Up (24 VDC)
Max. Strom	500 mA
Steckverbinder	Steckbar Phoenix 4 pol. MSTB, Federklemmen bis 2,5 mm ²
Analoge Ausgänge 14 (X9)	
Ausgangspegel / Auflösung	±10 V / 16 Bit
Max. Strom	10 mA
Steckverbinder	Steckbar Phoenix 6 pol. MSTB, Federklemmen bis 2,5 mm ²
Feldbus IN/OUT (X1, X2)	
Тур	Ethernet 100 MBit/s, Voll Duplex
Protokoll	EtherCAT, Profinet
Steckverbinder	RJ45
Diagnose (X3)	
lyp	Ethernet 100 MBit/s, Voll Duplex
Protokoll	
Steckverbinder	RJ45
Spannungsversorgung (X4)	24.1/DC - 100/
Versorgungsspannung Us	$24 \text{ VDC} \pm 10\%$
Stromautnahme (Us)	≤ 250 mA bei 24 V
Steckverbinder	Steckbar Phoenix 3 pol. MISTB, Federklemmen bis 2,5 mm ²

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de www.unidor.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

4.4 Umgebungsbedingungen

Arbeitstemperatur	0+50 °C
Lagertemperatur	-20+80 °C
Schock	25 G, 10 ms, ½ Sinus
Vibration IEC 68 Teil 2-6	10 G
Schutzart	IP 20

4.5 Maßzeichnung

4.6 Mechanik / Lieferumfang

127 x 115,3 x 47,3 mm
550 g
Auf Norm-Tragschiene TS 35
EN 60 715
Im Lieferumfang enthalten

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de www.unidor.de

Seite 16/62

Ref.: Handbuch_LVCnet.docx 03.05.2023

5 Inbetriebnahme Ethernet – Variante

5.1 Einschalten des Gerätes

Bei der Ethernet-Variante ist der RJ45-Anschluss (Stecker DIAG (X3)) zu verwenden. Sobald das Gerät mit 24 VDC versorgt (U_s LED leuchtet) und hochgefahren ist blinkt die "RUN"-LED grün. Daraufhin wird direkt auf dem OLED die Ansicht aus Abbildung 2 angezeigt. Durch das einmalige Drücken des "Enter"-Taster unterhalb des OLEDs wird das Menü geöffnet. Unter dem Punkt "Network" wird die IP-Adresse (Default-IP zum Auslieferungszeitpunkt) angezeigt. Hierdurch kann die LVCnet über den Browser bedient werden.

Abbildung 8: Geräteansicht

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

5.2 Übersicht

Nach Aufrufen der IP-Adresse ist folgende Ansicht zu sehen.

TRystems gmbh LVC.login	
Bitte Loggen Sie sich ein	
Benutzername Viewer v	Passwort zeigen
	enloggen

Abbildung 9: Ansicht im Browser: Login

Viewer-Passwort: 6803

Einrichter-Passwort: !Unidor0812

Nach dem Login wird die Hauptseite angezeigt. Diese bietet eine kompakte Übersicht über den Zustand des Gerätes und die vorgenommenen Einstellungen.

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

UN	idor tems gmbh	LVC.v	view									
									LVCn	et-Version	: 1.06	Logout
Charge	e input						Digital	I/O				
							Digital in	put		Digital	output	
Channel	Trigger	Scale	Actual pC	Minimal pC	Max	imal pC	Channel	State	Function	Output	State	Function
1	•	•	0.00	0.00	0.00		1	•	-Trigger 1 Trigger 2 Teach 1	1	•	n.a.
2	•	•	0.00	0.00	0.00		2		-Trigger 3 Trigger 4 Teach 2	2	•	n.a.
3	•	•	0.00	0.00	0.00		3		-Teach 3			
4	•	۰	0.00	0.00	0.00		4	•	-Teach 4			
Analog	l output					Actual co	nfiguratio	on				
Channel	Digits	Volt	Func	tion		Device: LVCnet Channel 1 Limit	50000 pC					Configuration
1	0	0.00000	Act.	Value 1		Channel 2 Limit	60000 pC					
2	0	0.00000	Act.	Value 2		Channel 3 Limit	70000 pC					
3	0	0.00000	Act.	Value 3		Channel 4 Limit	80000 pC					
4	0	0.00000	Act.	Value 4		Debounce Digita Channel 1 Debo Channel 2 Debo Channel 3 Debo Channel 4 Debo	al Input unce: 0 µs unce: 0 µs unce: 0 µs unce: 0 µs					
Dourioo tura -		11/0 0000	сти	Hord								
Device type Order numb	er:	10405304	-ETH 0000	Bootload	der-Ve	sion. rsion:	1.02 SPI			Ur	odate	
PGA-Versi	ion:	2000000		Producti	ion dat	te:	20211215					
Serial numb	er:	1		Calibrati	ion dat	te:	0			<u>T(</u>	CP/IP Setti	ngs

Abbildung 10: Hauptseite, Übersicht aller wichtigen Daten

Die Hauptseite, Abbildung 10, ist in vier Bereiche unterteilt.

Charge Input:

Es werden alle vier Eingangskanäle untereinander angezeigt. Sobald ein Trigger/Scale für den jeweiligen anliegt, leuchtet ein Signal in der entsprechenden Spalte in grün auf. In den restlichen drei Spalten wird die Ladung in Picocoulomb (pC) angezeigt. Dies ist ein Rohwert. Den verarbeiteten Wert (skaliert) kann im Bereich des "Analog Output" beobachtet werden.

Digital I/O:

Dieser Bereich zeigt gleichzeitig alle digitalen Ein- und Ausgänge. Wie auch beim "Charge Input" wird der Zustand über eine grüne Signalleuchte im Browser signalisiert. In der Spalte "Function" sind die Funktionen/Auswirkungen der einzelnen digitalen Kanäle aufgelistet. Diese ändern sich mit der jeweiligen Konfiguration, hierzu wird in Kapitel 5.3 eingegangen.

Analog Output:

In diesem Abschnitt befinden sich die Analogausgänge und deren aktuellen Werte. Wie bei den Digitaleingängen ist auch hier Funktion des Kanals aufgeführt. Des Weiteren sind die Digits (-32677 ... +32676) und Spannungswerte (±10 V) der Analogausgänge zu sehen.

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de www.unidor.de

Seite 19/62

Ref.: Handbuch_LVCnet.docx 03.05.2023

Actual Configuration:

Eine Übersicht bietet dieser Bereich. Hier wird unter anderem die aktuelle Konfiguration des Gerätes, LVCnet oder LVCpro, sowie deren Channel-Limits angezeigt. Im unteren Abschnitt wird die Zeit der Entprellung des jeweiligen Digitaleingangs dargestellt. Über den Link "<u>Configuration</u>" kann die Konfiguration der LVCnet grundlegend (Wechsel von LVCpro zu LVCnet) oder nur geringfügig geändert werden.

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

5.3 LVCnet – Varianten

Im Folgenden werden die unterschiedlichen Betriebsmodi der "LVCnet – Ethernet Variante" erläutert.

TRystems gmbh LVC.configuration		
	LVC.net-Version: 1.00	logout
Configuration		
Save		Back

Abbildung 11: Initialfenster für die Konfigurationsseiten

Configuration

	free configuration v
free configur	ation
LVCpro	
LVCpro - G	

Abbildung 12: Auswahl der möglichen Konfigurationen aufgeklappt

5.3.1 LVCnet – LVCpro Ersatz

Als LVCpro – Ersatz wird die LVCnet unter den gleichen Parametern wie ihr Vorgänger, die LVCpro, betrieben.

Da die LVCpro nur als 2-kanaliger Ladungsverstärker erhältlich ist, ist auch der Trigger dementsprechend nur 2kanalig. Somit ist der Digitaleingang 1 für für den Ladungseingang 1 zuständig und Digitaleingang 2 für den Ladungseingang 2.

			LVC.net-Version: 1.00	lo
pro				
Channel 1		Analog Output	Channel 2	
Code switch SW201:			Code switch SW401:	
0x0 ~	OUT1:	Actual Value Channel 1	0x0 ~	
	OUT2:	Maximum Value Channel 1		
Code switch SW202:	OUT3:	Actual Value Channel 2	Code switch SW402:	
0x0 v	OUT4:	Maximum Value Channel 2	0x0 v	

Abbildung 13: Konfigurationsseite der LVCpro

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de www.unidor.de

Seite 21/62

Ref.: Handbuch_LVCnet.docx 03.05.2023

Mithilfe der folgenden Tabelle und Formel kann die benötigte Einstellung für die Codeschalter ausgerechnet werden.

grobe Einstellung					
Kapazitive Verstärkung Codeschalter SW201, SW401	Kapazität (nF)				
0	71,8				
1	65,0				
2	61,8				
3	55,0				
4	49,8				
5	43,0				
6	39,8				
7	33,0				
8	38,8				
9	32,0				
A	28,8				
В	22,0				
С	16,8				
D	10,0				
E	6,8				
F*	0,0				

Feineinstellung						
Verstärkungsan- passung Codeschalter SW202, SW402	Verstärkungsfaktor (mal)					
0	11,12					
1	11,08					
2	11,03					
3	10,96					
4	10,93					
5	10,84					
6	10,76					
7	10,64					
8	10,48					
9	10,27					
А	10,07					
В	9,67					
С	9,51					
D	8,80					
E	7,90					
F	5,27					

* nicht erlaubte Code-Schalter Einstellung

Abbildung 14: Codeschalterstellung für LVCpro

Die Ausgangsspannung am Analogausgang ergibt sich somit aus

 $Analogausgang = \frac{Ladungsmenge}{Kapazit \"at} \cdot Verst \"arkungsfaktor$

Die Analogausgangsfunktionen sind wie bei der LVCpro belegt.

Analog Ausgang	Funktion
1	Aktuelle verstärkte Ausgangsspannung von Piezo-Eingang 1
2	Maximal verstärkte Ausgangsspannung von Piezo-Eingang 1
3	Aktuelle verstärkte Ausgangsspannung von Piezo-Eingang 2
4	Maximal verstärkte Ausgangsspannung von Piezo-Eingang 2

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

5.3.2 LVCnet – Freie Konfiguration

Wie in Abbildung 15 zu sehen ist kann jeder Kanal einzeln Konfiguriert werden. Sobald alle Änderungen vorgenommen wurden müssen die Einstellungen über den — Button gespeichert werden. Über den "Back"-Button kann wieder zur Übersicht navigiert werden.

Die einzelnen Bereiche werden wieder im Folgenden erläutert.

Abbildung 15: Übersicht der Konfiguration bei der LVCnet

<u>4-Channel:</u>

Hier kann der Trigger für der Digitaleingänge den Ladungskanälen zugewiesen werden. Es können mehrere Ladungskanäle gleichzeitig über einen Digitaleingang gesteuert werden. Umgekehrt ist dies nicht möglich.

<u>Scale:</u>

Der Scale Bereich steuert die Auflösung der Digits, Kapitel 4.2.2.3.

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de www.unidor.de

Seite 23/62

Ref.: Handbuch_LVCnet.docx 03.05.2023

<u>Teach:</u>

Wie in Kapitel 4.2.2.2 beschrieben, kann hier die Min-Max Erfassung für jeden Ladungskanal ein- und ausgeschaltet werden.

<u>Limits:</u>

Das Limit bestimmt die maximale positive Ladung des Kanals. Für diesen Betriebsmodus, LVCnet als freie Konfiguration, kann das Limit in beliebiger Höhe angegeben werden und entspricht somit direkt den 32676 Digits wie in Kapitel 4.2.2 beschrieben wurde.

Analog Output:

Auch die Analogausgänge können individuell für jede Anwendung ausgewählt werden.

	None		
	Act. Value 1		
	Act. Value 2		
	Act. Value 3		
	Act. Value 4		
	Max. Value 1		
	Max. Value 2		
	Max. Value 3		
Analog Output	Max. Value 4		
Channel 1	Act. Value 1 v		
Channel 2	Act. Value 1 V		
Channel 3	Act. Value 1 v		
Channel 4	Act. Value 1 ~		

Abbildung 16: Auswahl der Funktion des jeweiligen Analogausgangs

Digital Output:

t.b.d.

Debounce Digital Input:

Um die Digitaleingänge zu Entprellen kann hier die Entprellzeit in Mikrosekunden eingegeben werden.

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de www.unidor.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

5.4 Update des Gerätes

Ein Update des Gerätes ist nur möglich wenn der Login mit den Zugriffsrechten des Benutzers "Einrichter" oder höher erfolgt. Um zur Update-Seite zu gelangen muss die Navigation über den "Update-Link" auf der Hauptseite erfolgen.

											_	
Charge	e Input					Di	gital	I/O				
						Diç	jital Ir	put		Digital	Outpu	t
Channel	Trigger	Scale	Actual pC	Minimal pC	Maximal pC	Cha	innel	State	Function	Output	State	Function
1	•	0	0.00	0.00	0.00	1		0	-Trigger 1 Teach 1	1	0	n.a.
2	•	0	0.00	0.00	0.00	2		0	-Trigger 2 Teach 2	2	0	n.a.
3	•	•	0.00	0.00	0.00	5		0	-Trigger 3 Teach 3			
4	•	0	0.00	0.00	0.00	4		0	-Trigger 4 Teach 4			
Analog	g Output					Actual Confi	gura	tion				
bannel	Digits	Volt	Func	tion		Device: LVCnet Channel 1 Limit: 136	242 nC					Configuratio
4	Digita	0.00000	A of A			Channel 2 Limit: 136	242 pC					
2	0	0.00000	Act.)	Value 1		Channel 3 Limit: 136 Channel 4 Limit: 136	242 pC 242 pC					
3	0	0.00000	Act. \	/alue 3		Debounce Digital Inp	ut	116				
4	0	0.00000	Act. V	/alue 4		Channel 2 Debounce Channel 3 Debounce Channel 4 Debounce	2000 2000 2000 2000 2000	μs μs us				

Abbildung 17: Navigation zur Update-Seite

Erfolgte die Navigation zur Update-Seite findet sich folgende Übersicht vor.

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

	LVC.net-Version: 1.00	log
mware CPU aufspielen		
chsuchen) Keine Datei ausgewählt.		
Auf das Gerät laden		
mware FPGA aufspielen		
chsuchen		
Auf das Gerät laden		
mware Bootloader aufspielen		

Abbildung 18: Übersicht der Update-Seite

Für die CPU und den FPGA können nun Updates aufgespielt werden. Updates für den Bootloader sind nur durch einen Admin durchführbar.

Für die CPU sind nur ".bin" - Dateien als gültige Dateien zulässig. Unzulässige Dateien werden nicht akzeptiert.

Beim Update für den FPGA sind hingegen nur ".efw" - und ".rbf" -Dateien zulässig.

Bei allen Updates sind nur die von Unidor gelieferten Dateien zu verwenden.

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de www.unidor.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

5.5 TCP/IP-Einstellungen

Die IP-Adresse kann auf der rechten Hälfte der Seite entweder zu einer anderen statischen IP geändert oder DHCP aktiviert werden. Auf der linken Seite ist die aktuell erreichbare Netzwerk-Adresse zu sehen und ob DHCP eingeschaltet ist. Diese ändern sich erst bei einem Neustart des Gerätes.

Hinweis: Bei DHCP wird kein Gateway auf der Webseite angezeigt.

Unidor TR systems gmb	LVC.pro TC	P/IP Settings		
				LVCnet-Version: 1.06 Logout
Current IP Setti	ings		TCP/IP Settings	
DHCP			DHCP	
IP-Address		192.168.4.46	IP-Address	192.168.4.120
Netmask		255.255.255.0	Netmask	255.255.255.0
Gateway		192.168.4.200	Gateway	192.168.4.200
				Save
				Back
Device type:	LVC-0000-ETH	Hardware revision:	HWREV_	
Order number: FPGA-Version	104053040000 2000000	Bootloader-Version: Production date:	1.02 SPI 20211215	
Serial number:	1	Calibration date:	0	

Abbildung 19: TCP/IP Übersicht und Einstellungen

5.6 Logout

Da sich immer nur ein Benutzer in das Gerät einloggen kann sollte die Logout-Funktion genutzt werden, wenn die Bearbeitung, Kontrolle oder andere Aufgaben erledigt sind, sodass eine Blockierung des Gerätes vermeiden lässt.

Falls keine Aktion ausgeführt wird oder eine Navigation zu einer anderen Seite auf dem Gerät erfolgt wird der aktuelle Benutzer nach 10 Minuten automatisch ausgeloggt.

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de www.unidor.de

Seite 27/62

Ref.: Handbuch_LVCnet.docx 03.05.2023

6 Inbetriebnahme EtherCAT – Variante

6.1 Allgemeines

EtherCAT (**Ether**net for **C**ontrol and **A**utomation **T**echnology) ist eine **Echtzeit-Ethernet-Technologie** und ist besonders geeignet für die Kommunikation zwischen Steuerungssystemen und Peripheriegeräten wie z.B. E/A-Systeme, Antriebe, Sensoren und Aktoren.

EtherCAT wurde 2003 von der Firma Beckhoff Automation GmbH entwickelt und wird als offener Standard propagiert. Zur Weiterentwicklung der Technologie wurde die Anwendervereinigung "EtherCAT Technology Group" (ETG) gegründet.

EtherCAT ist eine öffentlich zugängliche Spezifikation, die durch die IEC (IEC/Pas 62407) im Jahr 2005 veröffentlicht worden ist und ist Teil der ISO 15745-4. Dieser Teil wurde in den neuen Auflagen der internationalen Feldbusstandards IEC 61158 (Protokolle und Dienste), IEC 61784-2 (Kommunikationsprofile) und IEC 61800-7 (Antriebsprofile und -kommunikation) integriert.

6.2 EtherCAT-Funktionsprinzip

Mit der EtherCAT-Technologie werden die allgemein bekannten Einschränkungen anderer Ethernet-Lösungen überwunden:

Das Ethernet Paket wird nicht mehr in jedem Slave zunächst empfangen, dann interpretiert und die Prozessdaten weiterkopiert. Der Slave entnimmt seine die für ihn bestimmten Daten, während das Telegramm das Gerät durchläuft. Ebenso werden Eingangsdaten im Durchlauf in das Telegramm eingefügt. Die Telegramme werden dabei nur wenige Nanosekunden verzögert. Der letzte Slave im Segment schickt das bereits vollständig verarbeitete Telegramm an den ersten Slave zurück. Dieser leitet das Telegramm sozusagen als Antworttelegramm zur Steuerung zurück. Somit ergibt sich für Kommunikation eine logische Ringstruktur. Da Fast-Ethernet mit Voll-Duplex arbeitet, ergibt sich auch physikalisch eine Ringstruktur.

Abbildung 20: EtherCAT-Funktionsprinzip

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

Seite 28/62

Ref.: Handbuch_LVCnet.docx 03.05.2023

6.3 Installieren / hinzufügen der ESI-Datei LVCnet-XXXX-EC.XML

Damit TwinCAT® den EtherCAT Slave beim Scan des EtherCAT Netzwerkes richtig einbinden kann ist es erforderlich die XML Gerätebeschreibung in das TwinCAT\IO\EtherCAT-Verzeichnis (normalerweise C:\TwinCAT\IO\EtherCAT\) zu kopieren. Dieser Schritt ist nur dann unbedingt erforderlich, wenn offline konfiguriert werden soll. Bei reiner Online-Konfiguration wird die ESI-Information aus dem EtherCAT Slave ausgelesen, falls die Gerätedatei nicht auf der lokalen TwinCAT Installation gefunden wird, wird eine Meldung ausgegeben (siehe unten).

TwinCAT System Manager				
New device type found (PSA4-0000-EC - 'TRS-PSA4-0000-EC'). Vendorld 0x582 ProductCode 0x10000001 RevisionNo 0x2				
Use available online description instead				
🗌 Übernehmen für alle	Ja	Nein		

Abbildung 21: Warnmeldung

Ist die Datei bereits installiert, wird das Gerät anstandslos erkannt.

6.4 Test des Verstärkers im "Free Run-Modus" mit TwinCAT

Nachdem die ESI-Datei installiert ist, kann das Gerät per "E/A-Geräte suchen" im EtherCAT-Netzwerk zuverlässig erkannt werden. Nachdem TwinCAT die E/A-Geräte gesucht und die Boxen im EtherCAT Netzwerk erkannt wurden, können im Free Run Modus bereits Eingangsdaten gelesen, sowie Ausgangsdaten geschrieben werden.

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

📴 Unbenannt - TwinCAT System Manager							
Datei Bearbeiten Aktionen Ansicht Optionen Hilfe							
D 😅 📽 🖬 🍜 🔃 X 🖻 🖻 🔒 🗛 👌 💻 🐽 🗸 💣 🧟	🛓 👧 🎨 🔨 🖉	🗕 🗣 🖹 🔍 🖓 🚱	🎗 🔊 🍕	👂 📳 🧣			
Didenanit - Wurnt All System Manager Date Basthetin Aktionen Hille Dete Basthetin Aktionen Analth Coltonen Hille Dete Basthetin Aktionen Analth Coltonen Hille Dete Basthetin Aktionen Analth Coltonen Hille Dete Basthetin - Konfiguration System - Konfiguration System - Konfiguration Gent 2: Processabilid Gent 2: Processabilid	Algemein Adag Name: Typ: Kommenta:	Compared and a c		Symbole erze	ugen [
	Nummer TR 1	Boxbezeichnung Box 1 (LVCnet-0000-EC)	Adresse 1001	Typ LVCnet-0000-EC	Eing 58.0	Ausg E-Bus (mA) 28.0	
Bereit						Lokal (192.168.30.128.1.1)	Free Run

Abbildung 22: Übersicht TwinCAT

6.5 Beschreibung des Prozessabbildes

6.5.1 Ladungsistwerte Kanal 1 – 4 "Charge Inputs"

Diese Prozessdaten geben solange der Trigger des betreffenden Kanals aktiviert ist, direkt den Ladungsistwert in pC aus.

Datentyp: DINT

Breite im Prozessabbild: 32 Bit

6.5.2 Zustand der Digitalen Eingänge 1-2 "Digital Inputs" / Limit Erkennung

Prozessdatenbits der Digitalen Eingänge 1 und 2. Sowie Anzeige der maximalen Slewrate der Eingangstufen 1...4. Die Limit Bit's sind 1-Aktiv und werden erst bei einem 0->1 Wechsel des entsprechenden Triggers zurückgesetzt.

Datentyp: BOOL

Breite im Prozessabbild: 6 Bit

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de www.unidor.de

Seite 30/62

Ref.: Handbuch_LVCnet.docx 03.05.2023

6.5.3 ADC-Ersatzwert des (skalierten) Ladungsistwertes 1 -4 "Analog Inputs"

Diese Prozessdaten geben einen auf 16 Bit Skalierten (siehe "Channel Limits") Ladungsistwert aus. Dieser Wert kann wie eine Analog-Eingangsklemme in der SPS verarbeitet werden.

Datentyp: INT								
Breite im Prozessabbild:		16 Bit (16 Bit (Pro Kanal)					
Darstellung :	0V	\rightarrow	0 pC	\rightarrow	0 Digits			
	+10V	\rightarrow	+ [Limit Channel n] pC	\rightarrow	+ 32767 Digits			
	-10V	\rightarrow	- [Limit Channel n] pC	\rightarrow	- 32768 Digits			

6.5.4 Min-Max Messung des Ladungsistwertes "Peakvalues"

Diese Prozessdaten ermöglichen es für jeden der 4 Eingangskanäle das Minimum und Maximum der Ladung in pC zu ermitteln. Hierzu muß die Messung mit den Teach-Bits [1...4] im Control Word.

6.5.5 Steuerung des Ladungsverstärkers "Control"

Über das Prozessdatenbyte "Control" bzw. dessen Bits können die 4 Kanäle des Ladungsverstärkers unabhängig voneinander gesteuert werden.

6.5.5.1 Trigger 1...4 Messfenster

Wird dieses Bit auf "Log. 1" gesetzt, ist der zugehörige Messkanal freigeschalten und der aktuelle Ladungsistwert kann über die Prozessdaten "Charge Inputs" oder über die "Analog Inputs" gelesen werden.

6.5.5.2 Teach 1...4 Maximalwert / Minimalwert ermitteln

Wird dieses Bit auf "Log. 1" gesetzt wird solange das Bit auf 1 ist der Maximalwert und der Minimalwert des betreffenden Kanals ermittelt. Wird das Bit auf "Log. 0" gesetzt, wird der zuletzt ermittelte Minimal und Maximalwert gespeichert. Bei erneuter Flanke von 0->1 des jeweiligen Bits wird die Messung neu gestartet.

6.5.5.3 Scale 1...4 Skalierung der Eingangsstufe(n)

Über diese Bits können die Ladungseingänge 1...4 unabhängig voneinander auf eine höhere Empfindlichkeit eingestellt werden.

Bit 0 = Normal Sensitivity (i.d.r ca. 11pC/Digit), Bit = 1 High Sensitivity (i.d.r. ca. 1pC/Digit)

6.5.6 Digital Outputs (Digitale Ausgänge)

Über diese Prozessdaten können die Digitalen Ausgänge 1+2 des Ladungsverstärkers gesteuert werden.

Datentyp: BOOL

Breite im Prozessabbild: 2 Bit

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de www.unidor.de

Seite 31/62

Ref.: Handbuch_LVCnet.docx 03.05.2023

6.5.7 Channel Limits – Kanalweise Skalierung der ADC-Ersatzwerte

Über diese Prozessdaten kann die Skalierung jedes einzelnen ADC Ersatzwert-Kanals (siehe 6.5.3)

bestimmt werden. Der Wert muss **vor** auslesen des ADC Ersatzwertes geschrieben werden, ansonsten ist der ADC Ersatzwert undefiniert. Die Eingabe erfolgt unsigned als DWORD (32 Bit) wert. Hierbei gilt dass das Limit positiv wie auch negativ gilt.

Beispiel:

Channel Limits->Channel 1 = 100000 [pC] (Vorgegebener Wert) Charge Inputs->Channel 1 = 50000 [pC] (Istwert) Analog Inputs->Channel 1 = 16384 [Digit]→ Entspricht 5 V Datentyp: DWORD Breite im Prozessabbild: 32 Bit

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

6.5.8 Übersicht aller Variablen

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de www.unidor.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

6.6 Konfigurieren der PDI / PDO Objekte

Bei diesem EtherCAT Slave ist es möglich das PDI/PDO - Interface anzupassen. Dies bedeutet, dass nicht benötigte PDO's bspw. ausgeblendet werden können. Dadurch reduziert sich die Größe des E/A Abbildes des Slaves, und somit auch die Bearbeitungszeit für die Prozessdaten durch den EtherCAT Master.

lgemein	EtherCAT	DC	Prozes	sdaten Startu	p CoE	- Online 🛛 C	Inline				
iync Man	lager:			PDO Liste:							
SM S	Size Ty	ype	Flags	Index	Size	Name		Flags	SM	SU	
0 1	92 MI	oxOut		0x1A00	16.0	Charge	Inputs	F	3	0	
1 1	92 Mi	oxin		0x1A02	8.0	Analog	Inputs	F	3	0	
2 2	28 Ou	itputs		0x1A03	32.0	Peakva	lues	F	3	0	
3 5	58 Inp	outs		0x1A04	2.0	Status		F	3	0	
				0x1601	2.0	Control		F	2	0	
				0x1602	2.0	Digital C	Jutputs	F	2	0	
				0x1603	16.0	Channe	Limits	F	2	0	
<			>								
200 Zuor	rdnung (0x1	C12):		PDO Inhalt (C	0x1A00):	0%.	New-		·	Defeult (
	0			Index	Size	Uns			уре	Derault (r	iexj
	2			0x3000:00	4.0	0.0	Channel 1 Channel 2	H H	EAL		
	4			0x3001.00	4.0	4.0	Channel 2	n D	EAL		
	4			0x3002.00	4.0	12.0	Channel 4	B	EAL		
				0,0000.00	4.0	16.0	Channer				
Downloa	ad			Predefined F	PDO Ass	ignment: (ki	eine)				
PD0 Zuordnung											
Lade PDO Info aus dem Gerät											
PDU Kontiguration Sure Unit Zuordeurg											

Abbildung 23: PDO-Übersicht

Es kann völlig frei gewählt werden, welche PDO's im jeweiligen Bereich benötigt werden und welche ausgeblendet werden sollen. Es ist zu beachten, dass mindestens 1 PDO für die Inputs (0x1C13) sowie 1 PDO Objekt für die Outputs (0x1C12) gewählt wird.

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

7 CoE (CAN over EtherCAT) Objekte

7.1 Objekt 1000h: Gerätetyp

Index	0x1000
Name	Device Type
Objekt Code	VAR
Datentyp	UNSIGNED32
Kategorie	Mandatory
Zugriff	ro
PDO Mapping	Nein

	Gera	itetyp	
Geräte-Pro	ofil-Nummer	Gerät	е-Тур
Byte 0	Byte 1	Byte 2	Byte 3
0h	00h	27 bis 20	2 ¹⁵ bis 2 ⁸

7.2 Objekt 1008h: Hersteller Gerätenamen

Enthält den Hersteller Gerätenamen, Übertragung per "Upload SDO Segment Request Protocol".

Index	0x1008
Name	Device Name
Objekt Code	VAR
Datentyp	VISIBLE_STRING
Kategorie	Optional
Zugriff	ro
PDO Mapping	Nein
Wert	"LVCnet-XXXX-EC", abhängig von der Geräteausführung

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

7.3 Objekt 1009h: Hersteller Hardwareversion

Enthält die Hersteller Hardwareversion, Übertragung per "Upload SDO Segment Request Protocol".

Index	0x1009
Name	Hardware Version
Objekt Code	VAR
Datentyp	VISIBLE_STRING
Kategorie	Optional
Zugriff	ro
PDO Mapping	Nein
Wert	",HWREV X" (X = Hardware Version A, B,)

7.4 Objekt 100Ah: Hersteller Softwareversion

Enthält die Hersteller Softwareversion

Index	0x100A
Name	Software Version
Objekt Code	VAR
Datentyp	VISIBLE_STRING
Kategorie	Optional
Zugriff	ro
PDO Mapping	Nein
Wert	"V1.00", abhängig von der aktuellen Version

7.5 Objekt 1018h: Identity Objekt

Das Identity Objekt enthält folgende Parameter:

- EtherCAT Vendor ID Enthält die von der ETG zugewiesene Geräte Vendor ID
- Product Code Enthält den Geräte-Produktcode
- Revision Number Enthält die Revisionsnummer des Gerätes, welche die Funktionalität und die einzelnen Versionen definiert.
- Serial Number Enthält die Geräte-Seriennummer

Index	0x1018
Name	Identity
Objekt Code	RECORD
Datentyp	IDENTITY
Kategorie	Mandatory

Sub-Index	0
Beschreibung	Anzahl der Einträge
Datentyp	UNSIGNED8
Kategorie	Mandatory
Zugriff	ro
PDO Mapping	nein
Wert	4

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

Seite 36/62

1

Ref.: Handbuch_LVCnet.docx 03.05.2023

Sub-Index Beschreibung Datentyp Kategorie Zugriff PDO Mapping Wert

Vendor ID UNSIGNED32 Mandatory Ro Nein 0x582 (TRsystems GmbH Systembereich Unidor)

Sub-Index Beschreibung Datentyp Kategorie Zugriff PDO Mapping Wert 2 Product Code UNSIGNED32 Mandatory Ro Nein 0x0x1001000B (= LVCnet-XXXX-EC)

Sub-Index Beschreibung Datentyp Kategorie Zugriff PDO Mapping Wert 3 Revision Number UNSIGNED32 Mandatory ro nein 0 (Revisionsnummer)

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

Sub-Index4BeschreibungSerial NumberDatentypUNSIGNED32KategorieMandatoryZugriffroPDO MappingneinWert? (Seriennummer geräteabhängig fest einprogrammiert)

7.6 Objekt 2018h: Ext. Deviceinformation Objekt

Das Identity Objekt enthält folgende Parameter:

- Bootloaderversion Enthält die Softwareversion des EtherCAT Bootloaders
- Production Date Enthält das Produktionsdatum des Geräts
- FPGA Version Enthält die Softwareversion des FPGA's
- FPGA Date Enthält das Datum der FPGA-Firmware
- Reserved (Unbelegt)

Index	0x2018
Name	Ext. Deviceinformation
Objekt Code	RECORD
Datentyp	EXTIDENTITY
Kategorie	Vendor Specific

Sub-Index	0
Beschreibung	Anzahl der Einträge
Datentyp	UNSIGNED8
Kategorie	Mandatory
Zugriff	ro
PDO Mapping	nein
Wert	5

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

www.unidor.de

Seite 38/62

1

ro

nein

"1.00"

Ref.: Handbuch_LVCnet.docx 03.05.2023

Sub-Index Beschreibung Datentyp Kategorie Zugriff PDO Mapping Wert

Datentyp

Zugriff

Wert

Sub-Index 2 Beschreibung Production Date UNSIGNED32 Mandatory Kategorie ro PDO Mapping nein z.B. 0x31052011 (=0xDDMMYYY = 31.05.2011)

Bootloader Version

VISIBLE_STRING

Mandatory

Sub-Index Beschreibung Datentyp Kategorie Zugriff PDO Mapping Wert

3 **FPGA** Version UNSIGNED32 Mandatory ro nein z.B. 0x01000001 (Softwareversionsnummer 1.0.0.1)

Sub-Index 4 FPGA Date Beschreibung Datentyp UNSIGNED32 Kategorie Mandatory Zugriff ro PDO Mapping nein z.B. 0x30032011 (=0xDDMMYYYY = 30.03.2011) Wert

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

Sub-Index5BeschreibungReservedDatentypUNSIGNED32KategorieMandatoryZugriffroPDO MappingneinWert0x0

7.7 Objekt 201Ah: Calibration Information Objekt

Das Calibration Information Objekt enthält folgende Parameter:

- Date of Calibration Enthält das Datum der letzten Kalibrierung im Werk
- Calibration State Anzeige des Kalibrierstatusses (VALID / INVALID)
- Reserved (Unbelegt)

Index	0x201A
Name	Calibration Information
Objekt Code	RECORD
Datentyp	CALIBINFORMATION
Kategorie	Vendor Specific

Sub-Index	0
Beschreibung	Anzahl der Einträge
Datentyp	UNSIGNED8
Kategorie	Mandatory
Zugriff	ro
PDO Mapping	nein
Wert	3

Sub-Index	1
Beschreibung	Date of Calibration
Datentyp	UNSIGNED32
Kategorie	Mandatory
Zugriff	ro
PDO Mapping	nein
Wert	0x25082011 (=0xDDMMYYY = 25.08.2011)

Sub-Index
Beschreibung
Datentyp
Kategorie
Zugriff
PDO Mapping
Wert

2 Calibration State VISIBLE_STRING Mandatory ro nein "VALID" (VALID oder INVALID)

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

Seite 40/62

Ref.: Handbuch_LVCnet.docx

03.05.2023

Handbuch LVCnet

Sub-Index Beschreibung Datentyp Kategorie Zugriff PDO Mapping Wert 3 Reserved UNSIGNED32 Mandatory ro nein 0x0

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

7.8 Gesamtübersicht Objektverzeichnis

1000	Device type	RO	0x00001389 (5001)
1001	Error register	RO	0x00 (0)
1008	Device name	RO	LVCnet-0000-EC
1009	Hardware version	RO	HWREVA
	Software version	RO	1.00
	Identity	RO	> 4 <
	Error Settinas	RO	>2<
+ 1601:0	Control BxPDO Map	RO	>13<
	Digital Outputs RxPDO Map	RO	>3<
+ 1603:0	Channel Limits RxPDO Map	RO	> 4 <
± 1604:0	Analog Outputs RxPDO Map	RO	> 4 <
1A00:0	Charge Inputs TxPDO Map	RO	> 4 <
	Analog Inputs TxPDO Map	RO	> 4 <
	Peakvalues TxPDO Map	RO	>8<
± 1A04:0	Status TxPDO Map	RO	> 16 <
	Sync manager type	RO	> 4 <
	RxPDO assign	RW	> 4 <
	TxPDO assign	BW	> 4 <
	SM output parameter	RO	> 32 <
🛨 1C33:0	SM input parameter	RO	> 32 <
主 ·· 2018:0	Ext. Deviceinformation	RO	>7<
主 ·· 2019:0	Hardware switches	RO	> 4 <
主 ··· 201A:0	Calibration Information	RO	> 3 <
主 201C:0	Hardware diagnostic	RO	> 6 <
主 - 20F0:0	TRsystems CoE Backup Parameter H	RO	> 2 <
3000	Act. Charge Channel 1	RO P	0.000000 (0.000000e+000)
3001	Act. Charge Channel 2	RO P	0.000000 (0.000000e+000)
3002	Act. Charge Channel 3	RO P	0.000000 (0.000000e+000)
3003	Act. Charge Channel 4	RO P	0.000000 (0.000000e+000)
3030	ADC Digits Channel 1	RO P	0
3031	ADC Digits Channel 2	RO P	0
3032	ADC Digits Channel 3	RO P	0
3033	ADC Digits Channel 4	RO P	0
3040	Minimum Channel 1	ROP	0.000000 (0.000000e+000)
3041	Minimum Channel 2	RO P	0.000000 (0.000000e+000)
3042	Minimum Channel 3	ROP	0.000000 (0.000000e+000)
3043	Minimum Channel 4	RO P	0.000000 (0.000000e+000)
3050	Maximum Channel 1	RUP	
3051	Maximum Channel 2	RUP	
3052	Maximum Channel 3	RUP	
3053	Maximum Channel 4	RUP	0.000000 (0.000000e+000)
4255	PSA TestMode	RW	UFF (U)
E 6000:0	Status	RU	> 8 <
6012		RU	
± 6020:0	ADL Values	RU DO	> 0 <
0030 E 7000-0	Diaital Outeute	nu PO	0X003E (62)
i≘ 7000.0 i≡	Control	DO DO	× 10 /
E 7010.0 E 7020∙0	Applea Outpute	DO DO	> 12 <
7020.0	Channel Limit Channel 1	BW/P	0
7031	Channel Limit Channel 2	BW P	0
7032	Channel Limit Channel 3	BWP	
7033	Channel Limit Channel 4	BWP	0
	Integrator Settings	RO	> 26 <

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de www.unidor.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

8 Firmwareupdate über TwinCAT®

Vor Update der Firmware sollte der aktuelle Stand also die bereits installierte Firmware überprüft werden.

Ein Update sollte nur durchgeführt werden wenn das Gerät Probleme aufweist, die durch ein Firmwareupdate behoben werden können.

Um den aktuellen Stand der Firmware abzufragen, muss sich der EtherCAT Slave mindestens im Zustand PreOP befinden.

Erstellen einer Free-Run Konfiguration mit TwinCAT:

- 1. Starten des TwinCAT System Managers. Falls bereits automatisch ein Projekt geöffnet wurde, ein neues Projekt anlegen.
- 2. In der Baumansicht, E/A-Geräte suchen per Rechtsklick auswählen. Die Nachfrage "Es können nicht alle E/A Geräte automatisch erkannt werden" mit OK bestätigen.

3. Nach Erscheinen des Dialogfeldes "n E/A Geräte gefunden", die entsprechende EtherCAT Verbindung selektieren und alle darüber hinaus erscheinenden weiteren Feldgeräte deaktivieren.

Abschließend den Dialog mit "OK" quittieren.

1 neue E/A Geräte gefunden	×
	OK Abbruch Alles wählen Nichts wählen

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de www.unidor.de

Seite 43/62

Ref.: Handbuch_LVCnet.docx 03.05.2023

- 4. Das nun erscheinende Dialogfeld "Nach neuen Boxen suchen" mit "Ja" beantworten.
- 5. Nach Abschluss des Vorganges das Dialogfeld "Aktiviere Free Run" mit "Ja" beantworten.

6. Prüfen des aktuellen Softwarestandes. Hierzu das entsprechende Gerät in der Baumansicht selektieren, und im rechten Fensterbereich (Registerkarten) die Option "CoE-Online" auswählen.

📴 Unbenannt - TwinCAT System Manager						
Datei Bearbeiten Aktionen Ansicht Optionen Hilfe						
i D 🖆 📽 🖬 🚑 🍡 X 🖻 🖻 📾 🗛 🁌 🖳 🐽 🗸 🗳 ֎	. 👧 💱 🔨 🕼	3 🚸 ≌ Q 🖓 & ♥ 🥵	P 🔗 🕜 🤋			
THE SYSTEM - Konfiguration						
SP5 - Konfiguration	Allgemein Ether	CAT DC Prozessdaten Startu	p CoE · Online Or	nline		
= 👿 E/A - Konfiguration						
E/A Geräte	Update L	iste 📃 🗌 Auto Update 🔽	Single Update 📃 S	Show Offline Data		
😑 🔫 Gerät 2 (EtherCAT)	Frueiter	All Objects				
🕂 Gerät 2-Prozessabbild	Envoluen	Al Objecto				
🕂 Gerät 2-Prozessabbild-Info	Add to Star	tup Online Data	Module OD (AoB	E Port): 0		
😟 💀 😂 Eingänge						
🗄 🌒 Ausgänge	Index	Name	Flags	Wert		
🕀 😫 InfoData	1000	Device type	RO	0x00001389 (5001)		
TR Box 1 (LVCnet-0000-EC)	1001	Error register	RO	0x00 (0)		
2uordnungen	1008	Device name	HU	LVCnet-0000-EC		
	1009	Fardware version	RU	1 00		
	F 1018-0	Identitu	BO	5.42		
	E-10F1:0	Error Settings	BO	>2<		
	E 1601:0	Control BxPD0 Map	RO	> 13 <		
	± 1602:0	Digital Outputs RxPDO Map	RO	>3<		
		Channel Limits RxPDO Map	RO	> 4 <		
	E 1604:0	Analog Outputs RxPDO Map	RO	> 4 <		
		Charge Inputs TxPDO Map	RO	> 4 <		
	E 1A02:0	Analog Inputs TxPDO Map	RO	> 4 <		
		Peakvalues TxPDO Map	RO	> 8 <		_
	1A04:0	Status TxPDO Map	RO	>16<		
	E 1000	Sync manager type	HU	>4<		
	E 10120	TuPDO assign	BW Du/	> 4 <		
	E 10320	SM output parameter	BO	> 32 /		
	1032.0	SM input parameter	BO	> 32 (
		Ext. Deviceinformation	RO	>7<		
		Hardware switches	RO	> 4 <		
	. ± 201A:0	Calibration Information	RO	> 3 <		
	. ± 201C:0	Hardware diagnostic	RO	> 6 <		
	1 20F0:0	TRsystems CoE Backup Paramete	rHRO	> 2 <		
	3000	Act. Charge Channel 1	R0 P	0.000000 (0.00000e+000)		
	3001	Act. Charge Channel 2	RO P	0.000000 (0.000000e+000)		
	3002	Act. Charge Channel 3	HU P	0.000000 (0.000000+000)		
	3003	Act. Charge Channel 4	HU P	0.000000 (0.000000e+000)		
	3030	ADC Digits Channel 2	BOP	0		
	3032	ADC Digits Channel 3	BO P	õ		
	3033	ADC Digits Channel 4	R0 P	0		
	3040	Minimum Channel 1	R0 P	0.000000 (0.000000e+000)		
	3041	Minimum Channel 2	R0 P	0.000000 (0.000000e+000)		
	3042	Minimum Channel 3	RO P	0.000000 (0.000000e+000)		
	3043	Minimum Channel 4	RO P	0.000000 (0.000000e+000)		
	3050	Maximum Channel 1	R0 P	0.000000 (0.00000e+000)		
	3051	Maximum Channel 2	RO P	0.000000 (0.000000e+000)		
	3052	Maximum Channel 3	HU P	0.000000 (0.000000e+000)		<u> </u>
	Name	Online Ty	yp Größe	e >Adre Ein/ User	Verknüpft mit	^
	VI Channel 1	0.000000 (0.00000 RE	AL 4.0	79.0 Eingang 0		
	VI Unannel 2 Channel 2	0.000000 (0.00000 RE	:AL 4.0	83.0 Eingang 0		
	Channel 3	0.000000 (0.00000 RE	-ML 4.0	91.0 Eingang U		
	Channel 1	0x0000 <0.000> IN	T 2.0	95.0 Eingang 0		~
Pornik				ingoing o	Label (100,100,00,100,1,1)	

Prüfen der Softwareversion (Objekt 0x100A) im obigen Beispiel \rightarrow V1.00

Prüfen der FPGA Version:

Hierzu Objekt 0x2018 (Ext. Deviceinformation) auswählen, und den Baumknoten öffnen.

Objekt 0x1018 kann zum Prüfen der Seriennummer des Gerätes geöffnet werden.

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de www.unidor.de

Seite 44/62

Ref.: Handbuch_LVCnet.docx 03.05.2023

Allgemein	EtherCAT DC	Prozessdaten Start	up CoE · Online (Online	
	odate Liste	🔲 Auto Update 🛛	Single Update 📃	Show Offline Data	
E	rweitert	All Objects			
Add	to Startup	Online Data	Module OD (Ac	DE Port): 0	
Index	Name		Flags	Wert	
1000	Device ty	ре	RO	0x00001389 (5001)	
1001	Error regis	ter	RO	0x00 (0)	
1008	Device na	ame	RO	LVCnet-0000-EC	
1009	Hardware	version	RO	HWREV A	
- 100A	Software	version	RO	1.00	
🚊 – 1018	t0 Identity		RO	> 4 <	
11	018:01 Vendor ID)	RO	0x00000582 (1410)	
1	018:02 Productic	ode	RO	0x1001000B (268501003)	J
- 1	018:03 Revision		RO	0x00000001 (1)	
1	018:04 Serial nun	nber	RO	0x000003E8 (1000)	
	:0 Error Setti	ngs	RO	>2<	
	:0 Control R:	kPDO Map	RO	>13<	
	:0 Digital Ou	tputs RxPD0 Map	RO	> 3 <	
	t0 Channel L	imits RxPDO Map	RO	> 4 <	
	:0 Analog O	utputs RxPD0 Map	RO	> 4 <	
):0 Charge In	puts TxPDO Map	RO	> 4 <	
	:0 Analog In	puts TxPDO Map	RO	> 4 <	
1402	0 Poskuslu	on TuPDO Mon	DO	×07	

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

9 Vorgehensweise zum Updaten der Software

Um eine Firmware (CPU oder FPGA) auf das Gerät zu übertragen, muss folgende Vorgehensweise

eingehalten werden:

- 1. Starten des TwinCAT System Managers und Erstellen einer "Free-Run" Konfiguration (siehe zuvor)
- Manuelles setzen des "Bootstrap"-Modes für den betreffenden Slave. Der EtherCAT Master muß mindestens in dem Zustand "Pre-OP" sein. Hierzu in der Baumansicht (linker Bildschirmbereich) das "Gerät 1 (EtherCAT)" auswählen. Im Rechten Bildschirmbereich den Karteireiter "Online" auswählen. In der erscheinenden Liste den gewünschten Slave (PSA4-0000-EC) auswählen und mit rechter Maustaste die Option "BOOTSTRAP Status anfordern" auswählen.

llgemein Adapter EtherCAT	Online CoE - Online	
No Addr Name	State	CRC
1001 Box 1 ('INIT' Status anfordern	0
	'PREOP' Status anfordern	
	'SAFEOP' Status anfordern	
	'OP' Status anfordern	
	'BOOTSTRAP' Status anfordern	
	'ERROR' Status löschen	
	EEPROM Update	
	Firmware Update	
	Erweiterte Einstellungen	
	Eigenschaften	
	Export	

Nach Anforderung des Bootstrap Modus signalisiert das Gerät dies über schnelles Blinken der Status-LED. (3. LED zwischen den beiden EtherCAT Ports am Gerät)

3. Nach erfolgreichem Statuswechsel muss nun die Option "Firmware Update…" per Rechtsklick ausgewählt werden. Im angezeigtem Dialogfeld muss die Datei, sowie ein Passwort für das Flashen der Firmware angegeben werden. Das Passwort ist 26061978. Der Dateiname selektiert nun ob es sich bei der angegebenen Datei um eine Firmware für die CPU oder den FPGA handelt. Es werden nur Dateinamen in folgendem Format akzeptiert:

ECATFW_LVCnet_CPU_*.EFW oder ECATFW_LVCnet_FPGA_*.EFW

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de www.unidor.de

Seite 46/62

Ref.: Handbuch_LVCnet.docx 03.05.2023

FoE Name Bear	beiten	
String:	ECATFW_LVCnet0000EC_REV_CPU_V30	ОК
Hex:	45 43 41 54 46 57 5F 5F 4C 56 43 6E 65 74 3	Abbruch
Länge:	38	
Passwort (hex):	0000000	

Also z.B.

ECATFW_LVCnet_CPU_VER_1.01.EFW → für die CPU Firmware

ECATFW_LVCnet_FPGA_VER_01.01.02.EFW \rightarrow für die FPGA Firmware

Die Taste "OK" startet den Flash-Vorgang. Der Status des Flashvorganges wird in der Statusleiste des TwinCAT System Managers angezeigt. Nach erfolgreichem Übertragen, wird dies über ein Meldungsfenster angezeigt. Bitte beachten Sie, dass nur 1 Update nach dem

Wechsel in den BOOT Modus zulässig ist. Wenn also 2 Dateien (CPU+FPGA) übertragen werden sollen, muss nach dem Übertragen der 1. Datei der Slave zuerst in einen anderen Zustand (INIT/PreOP/SafeOP/OP) geschalten werden, bevor ein zweites mal eine Firmware übertragen werden kann. Wird dies vergessen, so erscheint bei dem 2. Versuch folgende Fehlermeldung:

TwinCAT S	ystem Manager
8	Download failed! Failed to download file to slave device (1001) (error = 0x709).(error=0x709).
	ОК

- 4. Nach erfolgtem Update der CPU Firmware, kann der betreffende Slave sofort wieder in denselben Zustand wie der Master versetzt werden, und daraufhin die neu Installierte Softwareversion zu überprüfen.
- 5. Das Überprüfen der installierten Firmware Versionen erfolgt wie bereits oben beschrieben über den Karteireiter "CoE Online"

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de www.unidor.de

Seite 47/62

Ref.: Handbuch_LVCnet.docx 03.05.2023

10 Inbetriebnahme Profinet – Variante

10.1 Installieren / Hinzufügen der GSDML – Datei

Damit die LVCnet mit Siemens TIA Portal V15 projektiert werden kann, ist es erforderlich die passende GSDML Datei im Hardware-Katalog zu installieren. Hierzu muss in der Hardwarekonfiguration die Option "Extras \rightarrow Gerätebeschreibungsdateien (GSD) verwalten" angewählt werden. Hier kann die Gerätebeschreibung installiert werden.

Nach erfolgreicher Installation der GSDML-Datei wird die LVCnet im Hardwarekatalog unter

"Weitere Felgeräte \rightarrow PROFINET IO \rightarrow I/O \rightarrow TRsystems \rightarrow TRsystems \rightarrow LVCnet-0000-PN" angezeigt.

Weitere Informationen zur Installation einer GSDML Datei in Simens TIA Portal V15, sowie zum GSDML Format können über die Webseiten der Fa. Siemens, oder der PROFINET/PROFIBUS Nutzerorganisation (PNO) bezogen werden.

Abbildung 24: Übersicht GSDML-Datei hinzufügen TIA Portal V15

10.2 Hinzufügen der LVCnet zu einem PROFINET I/O System

Nachdem die GSDML-Datei installiert worden ist, kann die LVCnet per "Drag&Drop" vom Hardware Katalog in das PROFINET I/O-System eingefügt werden.

Nach dem neueinfügen einer LVCnet wird diese mit dem vorgegebenen Gerätenamen "lvcnet0000pn" eingefügt, dieser entspricht dem Auslieferungszustand der LVCnet.

Soll der Name geändert werden, so muß dieser per Primary-Setup-Tool (PST) oder über eine andere geeignete Konfigurationssoftware geändert werden.

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

Seite 48/62

Ref.: Handbuch_LVCnet.docx 03.05.2023

10.3 Beschreibung der Module

Die LVCnet verfügt über ein kompaktes Prozessabbild, so dass nur für die gewünschte Anwendung notwendigen Daten über das PROFINET I/O System übertragen werden müssen. Hierzu stehen momentan 7 Steckplätze für die nachfolgend beschriebenen Funktionsmodule zur Verfügung.

10.3.1 Prozessabbild des "Charge_Control" Moduls

Geräteübersicht									
Modul	Baugr	Steck	E-Adresse	A-Adres	Тур	Artikel-Nr.			
✓ lvc000pn	0	0			LVCnet-0000-PN	1040 52			
► X1	0	0 X1			lvcnet0000pn				
Charge Control_1	0	1	823	2425	Charge Control	1040 52			
	0	2							
	0	3							
	0	4							
	0	5							
	0	6							
-	0	7							

Abbildung 25: Prozessabbild Modul "Charge_Control"

10.3.1.1 Beschreibung Eingangsabbild "Charge_Control"

Eingangsabbild (Charge als Ladung in pC):

Datentyp:	Float32	
Breite im Prozessabbild:	4 Byte je Kanal	ightarrow Gesamt 16 Byte
Byte 03 47 811 1215	Funktion Ladungseingang Kanal Ladungseingang Kanal Ladungseingang Kanal Ladungseingang Kanal	1 [pC] 2 [pC] 3 [pC] 4 [pC]

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

10.3.1.2 Beschreibung Ausgangsabbild "Charge_Control"

Ausgangsabbild (Charge Steuerung):

Datentyp:	Byte	
Breite im Prozessabbild:	12 Bit / 4 Bit reserviert	ightarrow Gesamt 2 Byte
Bit	Funktion	
0	Trigger für Ladungseingang	g 1
1	Trigger für Ladungseingang	g 2
2	Trigger für Ladungseingang	j 3
3	Trigger für Ladungseingang	g 4
4	Teach für Ladungseingang	1
5	Teach für Ladungseingang	2
6	Teach für Ladungseingang	3
7	Teach für Ladungseingang	4
8	Scale für Ladungseingang 1	
9	Scale für Ladungseingang 2)
10	Scale für Ladungseingang	}
11	Scale für Ladungseingang 4	ļ
1215	Reserviert	

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

Geräteübersicht									
Y		Modul	Baugr	Steck	E-Adresse	A-Adres	Тур	Artikel-Nr.	
		 lvcnet0000pn 	0	0			LVCnet-0000-PN	1040 52 04 00	
		▶ X1	0	0 X1			lvcnet0000pn		
		 Charge Inputs 14 Oversam 	0	1			Charge Inputs 14		
		Charge Control with Ove	0	11		01	Charge Control wit		
		Charge IN 10 Times Over	0	12	043		Charge IN 10 Times		
		Charge IN 10 Times Over	0	13	84127		Charge IN 10 Times		
		Charge IN 10 Times Over	0	14	132175		Charge IN 10 Times		
		Charge IN 10 Times Over	0	15	210253		Charge IN 10 Times		
			0	2					
			0	3					
			0	4					
			0	5					
			0	6					
			0	7					

10.3.2 Prozessabbild des "Charge Inputs 1..4 Oversampling" Moduls

Abbildung 26: Prozessabbild Modul "Charge Inputs 1..4 Oversampling"

10.3.2.1 Beschreibung Ausgangsabbild "Charge Control with Oversampling"

Das Ausgangsabbild ist identisch mit dem aus Kapitel 10.3.1.2

10.3.2.2 Beschreibung Eingangsabbild Submodul, Charge IN 10 Times Oversampling

Eingangsabbild Submodul (Charge als Ladung in [pC] mit Option für Oversampling)

Datentyp:	UINT32 / Float32	
Breite im Prozessabbild:	44 Byte je Kanal	ightarrow Gesamt 176 Byte wenn alle 4 Submodule gesteckt sind.
Byte	Funktion	
03	Sample-Zähler (→ UIN	ГЗ2)
47	Ladungseingang Kanal	, Oversampling-Wert 1 [pC] (→ Float32)
811	Ladungseingang Kanal	, Oversampling-Wert 2 [pC] (→ Float32)
1215	Ladungseingang Kanal	, Oversampling-Wert 3 [pC] ($ ightarrow$ Float32)
1619	Ladungseingang Kanal	, Oversampling-Wert 4 [pC] (→ Float32)
2023	Ladungseingang Kanal	, Oversampling-Wert 5 [pC] ($ ightarrow$ Float32)
2427	Ladungseingang Kanal	, Oversampling-Wert 6 [pC] (→ Float32)
2831	Ladungseingang Kanal	, Oversampling-Wert 7 [pC] ($ ightarrow$ Float32)
3235	Ladungseingang Kanal	, Oversampling-Wert 8 [pC] (→ Float32)
3639	Ladungseingang Kanal	, Oversampling-Wert 9 [pC] (→ Float32)
4043	Ladungseingang Kanal	, Oversampling-Wert 10 [pC] (→ Float32)

Sample-Zähler zeigt an wie viele tatsächlich neu übertragen wurden. Bei einer Sample-Rate von 10 sollte dieser Zähler immer auf 10 stehen, sonst liegt ein Fehler vor.

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

10.3.2.3 Beschreibung Baugruppenparameter "Charge Control with Oversampling"

	Allgemein	IO-Vari	ablen	Systemkonstanten	Texte	
•	Allgemein	motor	Baugr	uppenparameter		
	E/A-Adressen	inteller	Ove	rsampling factor 110		
			-	Oversampling factor for all Channels : Simulation for Oversampling active/inactive :	10-times C Simulation)versampling I OFF

Abbildung 27: Baugruppenparameter "Charge Control with Oversampling"

Oversampling factor for all Channels:

Für diesen Baugruppenparameter sind die Oversampling-Faktoren zwischen 1 (für 1 Wert pro Zyklus) und 10 (für 10 Werte pro Zyklus) möglich.

Simulation for Oversampling active/inactive:

Mit dieser Funktion kann eine Simulation für die Oversampling-Werte eingeschaltet werden, sodass jeder Wert um 1 Digit erhöht wird.

Beispiel:

Solange die Simulierung eingeschaltet ist, wird für jedes Sample ein Zähler um den Wert ,1' erhöht. Somit müssen in jedem Zyklus die vorhandenen Daten jeweils um 1 erhöht sein.

Tabelle 1: Oversampling Beispiel mit Samplerate = 10

Sample	Zyklus	Daten
1	n	148
2	n	149
3	n	150
4	n	151
5	n	152
6	n	153
7	n	154
8	n	155
9	n	156
10	n	157

Im nächsten Zyklus (n+1) sollte dann im ersten Sample der Wert vom letzten Sample aus dem vorigen Zyklus um ,1' erhöht sein.

Sample	Zyklus	Daten
1	n+1	158

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de www.unidor.de

Seite 52/62

Ref.: Handbuch_LVCnet.docx 03.05.2023

10.3.3 Prozessabbild des "Analog_Input" Moduls

Geräteübersicht									
 U)		Modul	Baugr	Stock	E-Adresse	A-Adrec	Typ	Artikel-Mr	
		Modul	baugi	SIECK	L-Auresse	A-Aures	אני	ATUKEFINI.	
		 lvc000pn 	0	0			LVCnet-0000-PN	1040 52	
		▶ X1	0	0 X1			lvcnet0000pn		
			0	1					
		Analog Input_1	0	2	07	015	Analog Input	1040 52	
			0	3					
			0	4					
			0	5					
			0	6					
			0	7					

Abbildung 28: Prozessabbild Modul "Analog_Input"

10.3.3.1 Beschreibung Eingangsabbild "Analog_Input"

Eingangsabbild (Analog Input skaliert in Volt)

Datentyp:	Integer16	
Breite im Prozessabbild:	2 Byte je Kanal	ightarrow Gesamt 8 Byte
Byte	Funktion	
01	Skalierte / Berechnete	Ladung in Volt für Kanal 1
23	Skalierte / Berechnete	Ladung in Volt für Kanal 2
45	Skalierte / Berechnete	Ladung in Volt für Kanal 3
67	Skalierte / Berechnete	Ladung in Volt für Kanal 4

10.3.3.2 Beschreibung Ausgangsabbild "Analog_Input"

Ausgangsabbild (Maximalwert [pC] für Skalierung in Spannung [V])

Datentyp:	Unsigned32			
Breite im Prozessabbild:	4 Byte je Kanal	→ Gesamt 16	5 Byte	
Byte	Funktion			
03	Maximale Ladung [pC] zur	Skalierung der	Eingangsladung	Kanal 1
47	Maximale Ladung [pC] zur	Skalierung der	Eingangsladung	Kanal 2
811	Maximale Ladung [pC] zur	Skalierung der	Eingangsladung	Kanal 3
1215	Maximale Ladung [pC] zur	Skalierung der	Eingangsladung	Kanal 4

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

10.3.4 Prozessabbild des "Peak_Input" Moduls

Ger	äte	übersicht							
*		Modul		Baugr	Steck	E-Adresse	A-Adres	Тур	Artikel-Nr.
		 lvc000pn 		0	0			LVCnet-0000-PN	1040 52
		► X1		0	0 X1			lvcnet0000pn	
				0	1				
				0	2				
		Peak Input_	1	0	3	031		Peak Input	1040 52
				0	4				
				0	5				
				0	6				
				0	7				

Abbildung 29: Prozessabbild Modul "Peak_Input"

10.3.4.1 Beschreibung Eingangsabbild "Peak_Input"

Eingangsabbild (Spitzenwerte Min / Max [pC])

Datentyp:	Float32	
Breite im Prozessabbild:	8 Byte je Kanal	→ Gesamt 32 Byte
Byte	Funktion	
03	Minimale Ladung [pC] o	der Eingangsladung Kanal 1
47	Minimale Ladung [pC] of	der Eingangsladung Kanal 2
811	Minimale Ladung [pC] of	der Eingangsladung Kanal 3
1215	Minimale Ladung [pC] of	der Eingangsladung Kanal 4
1619	Maximale Ladung [pC]	der Eingangsladung Kanal 1
2023	Maximale Ladung [pC]	der Eingangsladung Kanal 2
2427	Maximale Ladung [pC]	der Eingangsladung Kanal 3
2831	Maximale Ladung [pC]	der Eingangsladung Kanal 4

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

10.3.5 Prozessabbild des "Status" Moduls

Geräteübersicht						
🔐 Modul	Baugr	Steck	E-Adresse	A-Adres	Тур	Artikel-Nr.
 Ivc000pn 	0	0			LVCnet-0000-PN	1040 52
▶ X1	0	0 X1			lvcnet0000pn	
	0	1				
	0	2				
	0	3				
Status LVCnet_1	0	4	01		Status LVCnet	1040 52
	0	5				
	0	6				
	0	7				

Abbildung 30: Prozessabbild Modul "Status"

10.3.5.1 Beschreibung Eingangsabbild "Status"

Eingangsabbild (Status-Bits)

Datentyp:	Unsigned16	
Breite im Prozessabbild:	2 Byte	→ Gesamt 2 Byte
Bit	Funktion (Bedeut	ung bei Bit = "Log 0")
0	Versorgungsspar	$\begin{array}{l} \text{Inung Up} \leq 6 \text{ V} \\ \text{Versergungssneppung} \left(12 \text{ V} \right) \text{ is the set of 11 V} \end{array}$
1	Analog negative	versorgungsspannung (-12 v) ist $\geq -11 \text{ v}$
2	Analog positive \	/ersorgungsspannung (+12 V) ist \leq 11 V
3	Interne Versorgu	ngsspannung (5 V) ist ≤ 4 V
4	Interne Versorgu	ngsspannung (2,5 V) ist \leq 2,3 V
5	USB Überstrom	
6	Digout 1	
7	Digout 2	
815	Reserviert	

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

10.3.6 Prozessabbild des "Digital_Output" Moduls

Geräte	übersicht						
''	Modul	Baugr	Steck	E-Adresse	A-Adres	Тур	Artikel-Nr.
	✓ lvc000pn	0	0			LVCnet-0000-PN	1040 52
	▶ X1	0	0 X1			lvcnet0000pn	
		0	1				
		0	2				
		0	3				
		0	4				
	Digital Output_1	0	5		0	Digital Output	1040 52
		0	6				
		0	7				

Abbildung 31: Prozessabbild Modul "Digital_Output"

10.3.6.1 Beschreibung Ausgangsabbild "Digital_Output"

Ausgangsabbild (Digitalausgänge)

Datentyp:	Unsigned8	
Breite im Prozessabbild:	2 Bit / 6 Bit reserviert	ightarrow Gesamt 1 Byte
Bit	Funktion (Bedeutung bei	Bit = "Log 1")
0	Digitalausgang 1 aktiv	
1	Digitalausgang 2 aktiv	
27	Reserviert	

Änderungen vorbehalten

Ref.: Handbuch_LVCnet.docx 03.05.2023

10.3.7 Prozessabbild des "Digital_Input" Moduls

Ger	äte	übersicht							
- 17		Modul		Baugr	Steck	E-Adresse	A-Adres	Тур	Artikel-Nr.
		 lvc000pn 		0	0			LVCnet-0000-PN	1040 52
		► X1		0	0 X1			lvcnet0000pn	
				0	1				
				0	2				
				0	3				
				0	4				
				0	5				
		Digital Inpu	t_1	0	6	0		Digital Input	1040 52
				0	7				

Abbildung 32: Prozessabbild Modul "Digital_Input"

10.3.7.1 Beschreibung Eingangsabbild "Digital_Input"

Eingangsabbild (Digitaleingänge)

Datentyp:	Unsigned8	
Breite im Prozessabbild:	4 Bit / 4 Bit reserviert	ightarrow Gesamt 1 Byte
Bit	Funktion (Bedeutung bei	Bit = "Log 1")
0	Digitaleingang 1 aktiv	
1	Digitaleingang 2 aktiv	
2	Digitaleingang 3 aktiv	
3	Digitaleingang 4 aktiv	
47	Reserviert	

Änderungen vorbehalten

Ref.: Handbuch_LVCnet.docx 03.05.2023

10.3.7.2 Beschreibung Baugruppenparameter "Digital_Input"

Allgemein	IO-Variablen	Systemkonstanten	Texte				
Allgemein		Baugruppenparameter					
Kataloginforn Prozessalarme	nation	Digital Input Debounce Settings					
E/A-Adressen		Debounce Mode:		ay inactive			
		Digin 1 Debound	e[µs]: 0				
	• • •	Digin 2 Debound	e[µs]: 0				
		Digin 3 Debound	e[µs]: 0				
		Digin 4 Debound	e[µs]: 0				

Abbildung 33: Baugruppenparameter "Digital_Input"

Für die Digital Input sind Entprell-Zeiten vorgesehen falls das der Signal-Geber (kundenseitig) keine saubere steigende Flanke liefert. Dieser Wert kann bis zu 65535 µs betragen. Die Baugruppenparameter können über die oberste Schaltfläche auch komplett ausgeschaltet werden, die Werte werden dann nicht mehr in der LVCnet verwertet.

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

10.3.8 Prozessabbild der "Analog_Output" Module

Für den Analogausgang sind zwei Module verfügbar. Beide können nur im Modulslot 7 gesteckt werden. Zum einen ist es das "Analog_Output_DepScale" Modul, welches sich wie bei den anderen Versionen verhält und in Kapitel 4.2.5 beschrieben ist.

Zum anderen kann das Modul "Analog_Output_Straight" genutzt werden um die Analogausgänge direkt anzusteuern. Somit kann der Benutzer den Analogausgang für benutzerspezifische Ausgaben verwenden.

Ger	äte	übersicht							
-		Modul		Baugr	Steck	E-Adresse	A-Adres	Тур	Artikel-Nr.
		 lvc000pn 		0	0			LVCnet-0000-PN	1040 52
		► X1		0	0 X1			lvcnet0000pn	
				0	1				
				0	2				
				0	3				
				0	4				
				0	5				
				0	6				
		Analog Out	tput DepScale_1	0	7		015	Analog Output Dep	1040 52

Abbildung 34: Prozessabbild Modul "Analog_Output_DepScale"

Ge	erä	te	übersicht							
ľ	2		Modul		Baugr	Steck	E-Adresse	A-Adres	Тур	Artikel-Nr.
			 lvc000pn 		0	0			LVCnet-0000-PN	1040 52
			► X1		0	0 X1			lvcnet0000pn	
					0	1				
					0	2				
					0	3				
					0	4				
					0	5				
					0	6				
			Analog Output (Controller_1	0	7		07	Analog Output Con	1040 52

Abbildung 35: Prozessabbild Modul "Analog_Output_Straight"

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

10.3.8.1 Funktionsbeschreibung "Analog_Output_DepScale"

10.3.8.2 Beschreibung Ausgangsabbild "Analog_Output_DepScale"

Ausgangsabbild (Analog Ausgang mit Verhältnis zur Eingangsladung)

Datentyp: Breite im Prozessabbild:	Integer32 4 Byte je Kanal	→ Gesamt 16 Byte
Byte 03 47 811 1215	Funktion Analogausgang 1 Analogausgang 2 Analogausgang 3 Analogausgang 4	im Verhältnis zur Eingangsladung Kanal 1 im Verhältnis zur Eingangsladung Kanal 2 im Verhältnis zur Eingangsladung Kanal 3 im Verhältnis zur Eingangsladung Kanal 4

 $U_A = \frac{ChargeInputCH(x)}{Analog_Output_DepScale(x)} \cdot 10 V$

Die Ausgangsspannung (U_A) an den Analogausgängen ergibt sich aus dem Verhältnis zwischen der Eingangsladung (Chargelnput) und dem Limit-Wert des Analog_Output_DepScale. Beispielsweiße bezieht sich also die Ausgangsspannung von Kanal 2 auf den Chargelnput (CH2) und das Limit von Analog_Output_DepScale (CH2).

Übersteigt die Eingangsladung (ChargeInput) das Limit des Analog_Output_DepScale, wird maximal ±10 V ausgegeben.

Beispiel:

Eingangsladung Kanal 3 (ChargeInput):	15832 pC
Limit Analogausgang Kanal 3 (Analog_Output_DepScale):	50000 pC
Ausgangsspannung Kanal 3:	$U_A = \frac{15832}{50000} \cdot 10 = 3,1664 V$

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

10.3.9 Prozessabbild des "Analog_Output_Straight" Moduls

10.3.9.1 Beschreibung Ausgangsabbild "Analog_Output_Straight"

Ausgangsabbild (Analog Ausgang variabel verwendbar)

Datentyp: Breite im Prozessabbild:	Integer16 2 Byte je Kanal	→ Gesamt 8 Byte
Byte 01 23 45 67	Funktion Analogausgang 1 frei Analogausgang 2 frei Analogausgang 3 frei Analogausgang 4 frei	verwendbar verwendbar verwendbar verwendbar

$U_A = \frac{Analog_Output_Straight}{65535} \cdot 20 V$

Die Ausgangsspannung (U_A) ergibt sich aus dem Verhältnis der obenstehenden Formel.

Analog_Output_Straight kann den Wert von -32768 ... 32767 [Digits] annehmen.

<u>Beispiel:</u>

Wert "Analog_Output_Straight" Kanal 2:

Ausgangsspannung Kanal 2:

-13484 [Digits] $U_A = \frac{-13484}{65535} \cdot 20 V = -4,1150 V$

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de www.unidor.de

Ref.: Handbuch_LVCnet.docx 03.05.2023

11 EU-Konformitätserklärung

EU - Declaration of conformity

	Hersteller	
	Manufacturer	
Anschrift / Address	TRsystems GmbH, Freiburgerst. 3, D-75179 Pforzheim	
Tel. / Phone	+49 (0)7231/3152-0	
Fax	+49 (0)7231/3152-99	
Land / Country	Deutschland / Germany	
Produktname / Product	Series: LVCnet	
	Type: LVC-xxxx-EC, LVC-xxxx-PN, LVC-xxxx-ETH	
	Order No.: 1040 5x xx xxxx	
Objektbeschreibung / Object description	Ladungsverstärker / Charge Amplifier	
Gegenstand Klassifizierung / Object classification	Gerät / Apparatus	
Verwendungszweck / Intended purpose	Industriell / Industrial	

Richtlinie / Directive

Harmonisierte Normen / Harmonised standards

2014/30/EU L96 / 79-106	Elektromagnetische Verträglichkeit (EMV)-Richtlinie / EMC Directive		
	EN 61000-6-2:2005/AC:2005	Immunitätsanforderung /	
		Immunity requirements	
	EN 61000-6-4:2007/A1:2011	Störaussendung für Industriebereiche	
		Emission standard for industrial environments	
	EN 61326-1:2013	Allgemeine Anforderungen /	
		General requirements	
2011/65/EU L174 / 88-110	RoHS-Richtlinie / RoHS Directive		
	EN 50581:2012	Beschränkung gefährlicher Stoffe	
		Restriction of hazardous substances	

Sonstige Normen / Other standards

2012/19/EU L 197/38-71	WEEE Richtlinie Elektro- und Elektronik-Altgeräte /	
	WEEE Directive Waste Electrical and Electronic Equipment	
	WEEE-RegNr. DE 11414956	

Das Produkt entspricht den grundlegenden Anforderungen und Bestimmungen der aufgeführten Normen und Methoden.

The Product compiles with the essential requirements and provision of the listed standards and methods. Diese Erklärung wird verantwortlich abgegeben durch:

This declaration is submitted by:

Pforzheim, 19.12.2022

Wolfram Jänsch, Technischer Jeiter & QMB Systembereich Unidor / Division Unidor

Änderungen vorbehalten

TRsystems GmbH, Systembereich Unidor Freiburger Straße 3 75179 Pforzheim Tel. +49 (0)7231 / 3152 0 unidor@trsystems.de

Seite 62/62